AI Features Documentation - KillIT v3
Overview
This document provides a comprehensive overview of all AI-powered features in the KillIT v3 application, including AWS Claude (via Bedrock) integrations and use cases.
Table of Contents
Core AI Services
1. Claude AI Integration (AWS Bedrock)
Location: /backend/services/ai/claude-service.js
Features:
- Multiple Claude model support (Claude 3.7 Sonnet, Claude 3.5 Sonnet, Claude Haiku)
- Rate limiting (30 requests/minute)
- Automatic retry with exponential backoff
- Token usage tracking
- Response validation
Example Usage:
const claudeService = require('./services/ai/claude-service');
// Generate CI insights
const insights = await claudeService.generateResponse(prompt, {
maxTokens: 2000,
temperature: 0.7
});
2. Embedding Service (AWS Titan)
Location: /backend/services/ai/embedding-service.js
Features:
- Vector embeddings using AWS Titan
- Batch processing capabilities
- Redis caching
- Progress tracking
Use Cases:
- CI semantic search
- Relationship similarity matching
- Knowledge base vectorization
3. RAG (Retrieval-Augmented Generation) Service
Location: /backend/services/ai/rag-service.js
Features:
- Hybrid search (vector + keyword)
- Context-aware responses
- Entity extraction
- Relationship queries
AI Use Cases
1. Semantic CI Search
Purpose: Natural language search for Configuration Items
How it works:
- User enters natural language query (e.g., "Find all Windows servers in production")
- Query is converted to embeddings
- Vector search finds similar CIs
- Results are ranked and returned
API Endpoint: POST /api/cmdb-ai/search
Example Request:
{
"query": "Show me all database servers with high CPU usage",
"limit": 10,
"filters": {
"type": "Server",
"status": "active"
}
}
2. AI-Powered Relationship Discovery
Purpose: Automatically discover relationships between CIs based on network connections
How it works:
- Analyzes network connection data from scan results
- Uses Claude to identify relationship patterns
- Creates AI-discovered relationships with confidence scores
- Learns from user feedback
API Endpoint: POST /api/discovery/process-scan/:scanId
Features:
- Network topology analysis
- Service dependency mapping
- Communication pattern recognition
- Confidence scoring
3. CI Insights Generation
Purpose: Generate intelligent insights about CIs
How it works:
- Analyzes CI attributes, relationships, and historical data
- Uses Claude to generate insights
- Identifies risks, dependencies, and recommendations
API Endpoint: POST /api/cmdb-ai/insights/:ciId
Example Insights:
- "This server hosts 5 critical applications and has no redundancy"
- "Database server showing unusual network traffic patterns"
- "Missing security patches for 3 months"
4. Software Classification & Mapping
Purpose: Automatically classify and map software instances
How it works:
- Analyzes software names, versions, and processes
- Uses AI to determine software families
- Maps to CPE (Common Platform Enumeration)
- Creates hierarchical relationships
Features:
- Automatic vendor identification
- Version normalization
- Process-to-application mapping
- Software family grouping
5. Natural Language Report Generation
Purpose: Convert natural language queries to complex reports
How it works:
- User enters query like "Show me all servers installed last month"
- AI converts to MongoDB aggregation pipeline
- Executes query and formats results
API Endpoint: POST /api/reports/ai/generate
Example Queries:
- "List all Windows servers with SQL Server installed"
- "Show compliance status by department"
- "Find all software without valid licenses"
6. Compliance Analysis
Purpose: AI-powered compliance checking
How it works:
- Analyzes CI configurations against compliance standards
- Identifies gaps and risks
- Provides remediation recommendations
Features:
- NIST, ISO, CIS benchmark checking
- Custom policy support
- Risk scoring
- Automated remediation suggestions
7. Holiday Calendar Generation
Purpose: Generate holiday calendars using AI
How it works:
- Uses OpenAI to generate country-specific holidays
- Includes cultural and regional holidays
- Fallback to predefined holidays
API Endpoint: POST /api/holidays/generate
API Endpoints
CMDB AI Endpoints
POST /api/cmdb-ai/search- Semantic search for CIsPOST /api/cmdb-ai/find-related- Find related CIsPOST /api/cmdb-ai/insights/:ciId- Generate CI insightsGET /api/cmdb-ai/embeddings/status- Check embedding statusPOST /api/cmdb-ai/embeddings/generate- Generate embeddingsGET /api/cmdb-ai/test- Test AI connectivity
AI Analytics Endpoints
GET /api/ai-analytics/dashboard- AI usage dashboardGET /api/ai-analytics/queries- Query performance metricsPOST /api/ai-analytics/feedback- Submit query feedbackGET /api/ai-analytics/optimization-recommendations- Get optimization tips
AI Relationship Endpoints
GET /api/ci/:ciId/ai-relationships- Get AI-discovered relationshipsPOST /api/ai-relationships/analyze- Analyze potential relationshipsPUT /api/ai-relationships/:id/confidence- Update confidence scorePOST /api/ai-relationships/feedback- Provide feedback
Configuration
Environment Variables
# AWS Configuration
AWS_ACCESS_KEY_ID=your-access-key
AWS_SECRET_ACCESS_KEY=your-secret-key
AWS_REGION=eu-central-1
# Claude Model Selection
CLAUDE_MODEL=eu.anthropic.claude-sonnet-4-5-20250929-v1:0
# OpenAI (for holiday generator)
OPENAI_API_KEY=your-openai-key
# Redis (for caching)
REDIS_URL=redis://localhost:6379
Model Options
// Available Claude models
const CLAUDE_MODELS = {
CLAUDE_4_5_SONNET: 'eu.anthropic.claude-sonnet-4-5-20250929-v1:0', // Latest, highest quality
CLAUDE_4_5_HAIKU: 'eu.anthropic.claude-haiku-4-5-20251001-v1:0', // Fast, cost-effective
CLAUDE_3_5_SONNET: 'anthropic.claude-3-5-sonnet-20241022-v2:0', // Standard
CLAUDE_3_HAIKU: 'anthropic.claude-3-haiku-20240307-v1:0' // Fallback
};
// Embedding model
const EMBEDDING_MODEL = 'amazon.titan-embed-text-v2:0';
Implementation Examples
// Example implementation
async function getAndStoreInsights(ciId, prompt) {
const insights = await claudeService.generateResponse(prompt, {
temperature: 0.7,
maxTokens: 2000,
model: 'claude-4.5-sonnet'
});
// Store insights
await AIInsights.create({
ciId,
insights: insights.content,
generatedAt: new Date(),
model: 'claude-4.5-sonnet'
});
return insights;
}
Best Practices
- Rate Limiting: Always respect rate limits to avoid service interruptions
- Caching: Use Redis caching for embeddings to reduce API calls
- Error Handling: Implement robust error handling with retries
- Feedback Loop: Collect user feedback to improve AI accuracy
- Cost Management: Monitor token usage and optimize prompts
- Security: Never expose API keys in frontend code
- Testing: Use test endpoints to verify AI connectivity
Monitoring & Analytics
The application includes comprehensive AI monitoring:
- Token usage tracking
- Query performance metrics
- Error rate monitoring
- User feedback analysis
- Cost tracking by model
Access the AI Analytics Dashboard at /api/ai-analytics/dashboard for real-time metrics.
ITSM Integrations
AI Change Manager for Xurrent (4me)
Location: /backend/controllers/integrations/xurrentWebhookController.js
Service: /backend/services/ai/changeRiskAnalysisService.js
Overview: The AI Change Manager provides automated, intelligent risk assessment for IT changes managed in Xurrent (4me) ITSM platform. It leverages NopeSight's CMDB and AI-enhanced relationship data to provide comprehensive change impact analysis.
Architecture:
- Webhook Receiver: Accepts webhooks from Xurrent automation rules
- AI Analysis Engine: Processes change requests using Claude AI
- Risk Calculator: Multi-dimensional risk scoring algorithm
- Xurrent Updater: Updates task fields via GraphQL API
Key Features:
1. Multi-Dimensional Risk Assessment
const riskDimensions = {
technical: {
weight: 0.3,
factors: ['complexity', 'compatibility', 'testing_coverage']
},
business: {
weight: 0.35,
factors: ['revenue_impact', 'user_count', 'criticality']
},
dependency: {
weight: 0.25,
factors: ['connected_systems', 'integration_points', 'cascade_potential']
},
historical: {
weight: 0.1,
factors: ['past_failures', 'change_frequency', 'team_experience']
}
};
2. Impact Analysis
- System Discovery: Identifies all affected systems using CMDB relationships
- User Impact: Calculates number of affected users
- Service Mapping: Maps impact to business services
- Downtime Estimation: Provides risk-adjusted time estimates
3. Intelligent Recommendations
The AI generates three categories of recommendations:
- Pre-Change: Validation and preparation steps
- During-Change: Monitoring and checkpoints
- Post-Change: Verification and rollback criteria
4. CAB Documentation
Automatically generates:
- Executive summary
- Risk assessment matrix
- Impact visualization
- Talking points for CAB meetings
- Success criteria
API Endpoints:
// Webhook receiver
POST /api/integrations/xurrent/webhook/:configId/change-analysis
// Sample webhook payload
{
"event": "automation_rule",
"payload": {
"ci_id": ["ci-123", "ci-456"],
"ci_name": ["Database Server", "App Server"],
"change_note": ["Upgrade to latest version"],
"task_node_id": "task-789",
"change_fields": {
"priority": "high",
"category": "software_update"
}
}
}
Configuration Requirements:
-
Xurrent API Token Scopes:
- Automation Rule: Create, Read, Update, Delete
- Task: Create, Read, Update
- Task Template: Create, Read, Update
- UI Extension: Create, Read, Update
- Webhook: Create, Read, Update, Delete
- Note: Create, Read
-
CMDB Prerequisites:
- Populated CI database
- Network relationships discovered
- Software dependencies mapped
- AI-enhanced relationships (optional but recommended)
Custom Fields in Xurrent: The integration creates 19 custom fields in Xurrent tasks:
| Field Category | Fields | Description |
|---|---|---|
| Risk Scores | ai_risk_level, ai_risk_score, ai_technical_risk, ai_business_risk, ai_dependency_risk, ai_historical_risk | Multi-dimensional risk assessment |
| Impact Metrics | ai_affected_systems, ai_critical_impacts, ai_affected_users, ai_affected_services | Quantified impact analysis |
| Time Estimates | ai_planned_duration, ai_risk_adjusted_time, ai_service_downtime, ai_recommended_window | Downtime predictions |
| Recommendations | ai_pre_change_rec, ai_during_change_rec, ai_post_change_rec | Actionable guidance |
| Analysis | ai_summary, ai_insights, ai_confidence | AI analysis metadata |
Implementation Example:
// Process change webhook
async function processChangeAnalysis(webhookData, configId) {
// 1. Extract CI information
const ciIds = webhookData.ci_id;
const changeNote = webhookData.change_note;
// 2. Fetch CI details from CMDB
const cis = await CI.find({
sourceID: { $in: ciIds }
}).populate('relationships');
// 3. Analyze with AI
const analysis = await changeRiskAnalysisService.analyzeChange({
ciId: cis[0]._id,
changeDescription: changeNote,
changeType: webhookData.change_fields?.category
});
// 4. Update Xurrent task
await xurrentService.updateTaskWithAIAnalysis(
webhookData.task_node_id,
analysis
);
}
Performance Metrics:
- Average analysis time: 5-10 seconds
- Webhook response time: <200ms (async processing)
- Field update time: 2-3 seconds
- Success rate: >98%
Best Practices:
- Ensure CMDB is regularly updated with discovery scans
- Map critical systems for accurate impact assessment
- Configure product mappings for better Xurrent integration
- Monitor webhook delivery status
- Review AI confidence scores for critical changes
Future Enhancements
- Predictive Maintenance: Use historical data to predict failures
- Anomaly Detection: Real-time anomaly detection in CI behavior
- Automated Remediation: AI-driven problem resolution
- Natural Language CI Updates: Update CIs using natural language
- Multi-modal Analysis: Incorporate logs and metrics in analysis
- Enhanced Change Manager:
- Learning from change outcomes
- Automated change scheduling
- Rollback automation triggers
- Cross-platform ITSM support